Kinematic Self-Replicating Machines

© 2004 Robert A. Freitas Jr. and Ralph C. Merkle. All Rights Reserved.

Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004.


6.2.3 Clarifying the Proposal

A third powerful motivation for studying molecular assembler design is the need to clarify the proposal. At the present time, many research scientists support the general claim that we should eventually be able to arrange atoms in most of the ways permitted by physical law, and that artificial programmable self-replicating systems are feasible. However, many of those researchers who are supportive of these general claims do not as yet have a clear and specific understanding of what a system able to arrange atoms and to self-replicate might look like. The only existing system designs that are widely understood are biological in character – and biological systems are notably deficient in several critical areas from the perspective of manufacturing.

An important motivation of this book, as well as future studies, is to help eliminate certain popular misconceptions about replicators and the process of self-replication. The term “self replication” carries assumptions and connotations (mostly derived from biological systems) that are grossly incorrect or misleading when applied to many proposed machine self-replicating systems. For example, some people assume that replicating systems must (a) be like living systems, (b) be adaptable (able to survive in the natural environment), (c) be very complex, (d) have onboard instructions, (e) be self-sufficient (using only very simple or basic parts), (f) be able to evolve into systems more powerful than us, and (g) come to view all living things, including us, as their food. As demonstrated elsewhere in this book, none of these assumptions is correct.

Such misconceptions are more than of mere academic interest and could actually prove quite harmful. That’s because the fear of self-replicating systems [2908] is often based on misconceptions related to safety or assumptions about the supposed absence of viable control schemes. These misplaced fears could block needed research and thus prevent the acquisition of a deeper understanding of certain kinds of highly specialized systems that might pose serious concerns [271]. This is particularly true when programs and researchers avoid molecular assembler R&D for reasons of political convenience.


Last updated on 1 August 2005