Kinematic Self-Replicating Machines

© 2004 Robert A. Freitas Jr. and Ralph C. Merkle. All Rights Reserved.

Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004.


 

References 2100-2199

2100. Vincenzo Balzani, Alberto Credi, Margherita Venturi, Molecular Devices and Machines: A Journey into the Nanoworld, VCH Verlagsgesellschaft MBH, 2003.

2101. Karen Hopkin, “Designer genomes,” Scientific American Presents: Extreme Engineering 10(Winter 1999):78-81.

2102. Tanja Klaus, R. Joerger, E. Olsson, C.G. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proc. Natl. Acad. Sci. (USA) 96(23 November 1999):13611-13614; Proc. Natl. Acad. Sci. (USA) 96(7 December 1999):14183-14185 (comment); “Bacteria with a silver lining,” BBC Online, 23 November 1999; http://news.bbc.co.uk/hi/english/sci/tech/newsid_533000/533416.stm

2103. T. Klaus-Joerger, R. Joerger, E. Olsson, C. Granqvist, “Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science,” Trends Biotechnol. 19(January 2001):15-20.

2104. Ronald S. Oremland, Mitchell J. Herbel, Jodi Switzer Blum, Sean Langley, Terry J. Beveridge, Pulickel M. Ajayan, Thomas Sutto, Amanda V. Ellis, Seamus Curran, “Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria,” Appl. Environ. Microbiol. 70(January 2004):52-60; http://aem.asm.org/cgi/content/abstract/70/1/52. See also: Jodi Ackerman, “Findings of Novel Nanoproperties in Selenium Produced By Bacteria Open New Area of Exploration, Findings Could Lead to Faster Electronic Devices,” Press Release, Rensselaer Polytechnic Institute, 10 February 2004; http://www.rpi.edu/web/News/press_releases/2004/nanosphere.htm

2105. O.W. Nadeau, D.W. Gump, G.M. Hendricks, D.H. Meyer, “Deposition of bismuth by Yersinia enterocolitica,” Med. Microbiol. Immunol. (Berl.) 181(1992):145-152.

2106. M. Kowshik, N. Deshmukh, W. Vogel, J. Urban, S.K. Kulkarni, K.M. Paknikar, “Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode,” Biotechnol. Bioeng. 78(5 June 2002):583-588.

2107. R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, “Biomimetic synthesis and patterning of silver nanoparticles,” Nat. Mater. 1(November 2002):169-172.

2108. M. Kierans, A.M. Staines, H. Bennett, G.M. Gadd, “Silver tolerance and accumulation in yeasts,” Biol. Met. 4(1991):100-106.

2109. Absar Ahmad, Satyajyoti Senapati, M. Islam Khan, Rajiv Kumar, R. Ramani, V. Srinivas, Murali Sastry, “Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species,” Nanotechnology 14(July 2003):824-828; http://www.iop.org/EJ/abstract/-ffissn=0957-4484/-ff30=all/0957-4484/14/7/323 (abstract).

2110. D. Schuler, R.B. Frankel, “Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications,” Appl. Microbiol. Biotechnol. 52(October 1999):464-473; R.E. Dunin-Borkowski, M.R. McCartney, R.B. Frankel, D.A. Bazylinski, M. Posfai, P.R. Buseck, “Magnetic microstructure of magnetotactic bacteria by electron holography,” Science 282(4 December 1998):1868-1870.

2111. T. Kondo, M. Nojiri, Y. Hishikawa, E. Togawa, D. Romanovicz, R.M. Brown Jr., “Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates,” Proc. Natl. Acad. Sci. (USA) 99(29 October 2002):14008-14013; http://www.pnas.org/cgi/content/full/99/22/14008. See also: Helen Pearson, “Bugs trained to build circuit,” Nature ScienceUpdate, 8 October 2002; http://www.nature.com/nsu/021007/021007-1.html

2112. R.M. Brown Jr., J.H. Willison, C.L. Richardson, “Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process,” Proc. Natl. Acad. Sci. (USA) 73(December 1976):4565-4569; C.H. Haigler, R.M. Brown Jr., M. Benziman, “Calcofluor white ST alters the in vivo assembly of cellulose microfibrils,” Science 210(21 November 1980):903-906; C.H. Haigler, A.R. White, R.M. Brown Jr., K.M. Cooper, “Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives,” J. Cell Biol. 94(July 1982):64-69.

2113. J. Xu, R.A. Clark, “Extracellular matrix alters PDGF regulation of fibroblast integrins,” J. Cell Biol. 132(January 1996):239-249.

2114. E.E. Qwarnstrom, R.C. Page, “Development of a three-dimensional extracellular matrix synthesized by human diploid fibroblasts in vitro,” J. Cell Sci. 84(August 1986):183-200.

2115. R.A. Clark, G.A. McCoy, J.M. Folkvord, J.M. McPherson, “TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event,” J. Cell Physiol. 170(January 1997):69-80.

2116. J.C. Dallon, J.A. Sherratt, “A mathematical model for fibroblast and collagen orientation,” Bull. Math. Biol. 60(January 1998):101-129.

2117. H. Yamada, T. Inazumi, S. Tajima, H. Muramatsu, T. Muramatsu, “Stimulation of collagen expression and glycosaminoglycan synthesis by midkine in human skin fibroblasts,” Arch. Dermatol. Res. 289(June 1997):429-433.

2118. G. Aktas, R. Kayton, “Ultrastructural immunolocalization of basic fibroblast growth factor in fibroblasts and extracellular matrix,” Histochem. Cell. Biol. 113(March 2000):227-233.

2119. V.C. Mudera, R. Pleass, M. Eastwood, R. Tarnuzzer, G. Schultz, P. Khaw, D.A. McGrouther, R.A. Brown, “Molecular responses of human dermal fibroblasts to dual cues: contact guidance and mechanical load,” Cell Motil. Cytoskeleton 45(January 2000):1-9.

2120. D.S. Steinbrech, M.T. Longaker, B.J. Mehrara, P.B. Saadeh, G.S. Chin, R.P. Gerrets, D.C. Chau, N.M. Rowe, G.K. Gittes, “Fibroblast response to hypoxia: the relationship between angiogenesis and matrix regulation,” J. Surg. Res. 84(15 June 1999):127-133.

2121. D. Kessler, S. Dethlefsen, I. Haase, M. Plomann, F. Hirche, T. Krieg, B. Eckes, “Fibroblasts in mechanically stressed collagen lattices assume a ‘synthetic’ phenotype,” J. Biol. Chem. 276(28 September 2001):36575-36585.

2122. T.S. Kim, S.W. Chung, S.Y. Hwang, “Augmentation of antitumor immunity by genetically engineered fibroblast cells to express both B7.1 and interleukin-7,” Vaccine 18(15 June 2000):2886-2894; T.S. Kim, S.W. Chung, S.H. Kim, B.Y. Kang, S.Y. Hwang, J.W. Lee, “Genetically engineered fibroblasts with antigen-presenting capability: efficient induction of an antigen-specific cytotoxic T-lymphocyte response and protection against tumor development in vivo,” Cancer Gene Ther. 7(June 2000):861-869; T.S. Kim, S.W. Chung, S.H. Kim, S.N. Kang, B.Y. Kang, “Therapeutic anti-tumor response induced with epitope-pulsed fibroblasts genetically engineered for B7.1 expression and IFN-gamma secretion,” Int. J. Cancer 87(1 August 2000):427-433.

2123. F. Grinnell, H. Fukamizu, P. Pawelek, S. Nakagawa, “Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in long-term cultures supplemented with ascorbic acid,” Exp. Cell Res. 181(April 1989):483-491.

2124. M. Eastwood, D.A. McGrouther, R.A. Brown, “Fibroblast responses to mechanical forces,” Proc. Inst. Mech. Eng. [H] 212(1998):85-92.

2125. Mark Ptashne, A Genetic Switch: Phage (Lambda) and Higher Organisms, Blackwell Science, Inc., Boston, MA, 1996.

2126. Ron Weiss, “Programming biological cells,” October 1998; http://www.swiss.ai.mit/%7Erweiss/bio-programming/asplos98-talk.pdf

2127. Ron Weiss, “Toward in-vivo digital circuits,” January 1999; http://www.swiss.ai.mit/%7Erweiss/bio-programming/dimacs99-evocomp.pdf

2128. Ron Weiss, “Digitally programmed cells,” October 1999; http://www.swiss.ai.mit/%7Erweiss/bio-programming/NSFBMCmeeting99.pdf

2129. Michael B. Elowitz, S. Leibler, “A synthetic oscillatory network of transcriptional regulators,” Nature 403(20 January 2000):335-338; http://www.aph.caltech.edu/people/Repressilator.pdf

2130. T.S. Gardner, C.R. Cantor, J.J. Collins, “Construction of a genetic toggle switch in Escherichia coli,” Nature 403(20 January 2000):339-342.

2131. Ron Weiss, Thomas F. Knight, Jr., “Engineered communications for microbial robotics,” June 2000; http://www.swiss.ai.mit/%7Erweiss/bio-programming/rweiss-dna6.pdf

2132. J. Hasty, D. McMillen, J.J. Collins, “Engineered gene circuits,” Nature 420(14 November 2002):224-230; http://dx.doi.org/10.1038/nature01257 (abstract)

2133. C.C. Guet, M.B. Elowitz, W. Hsing, S. Leibler, “Combinatorial synthesis of genetic networks,” Science 296(24 May 2002):1466-1470, 1407-1408 (comment); http://www.aph.caltech.edu/people/CombinatorialNetworks.pdf

2134. M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, “Stochastic gene expression in a single cell,” Science 297(2002):1183-1186; http://www.aph.caltech.edu/people/Noise.pdf

2135. J.M. Hasty, “Design then mutate,” Proc. Natl. Acad. Sci. (USA) 99(24 December 2002):16516-16518.

2136. “Engineered gene circuits: A playground for physicists and mathematicians,” Joint Mathematics Meetings, American Mathematical Society, 15 January 2003, Baltimore, MD; http://www.ams.org/amsmtgs/2074_abstracts/983-92-1363.pdf (abstract)

2137. Erica Klarreich, “Digital Cells: Computer circuits made of genes may soon program bacteria,” Science News 163(26 April 2003); http://www.sciencenews.org/20030426/bob11.asp

2138. Y. Yokobayashi, et al, “Evolutionary design of genetic circuits and cell-cell communication,” Advances in Complex Systems (2003), in press; http://www.ee.princeton.edu/~rweiss/bio-programming/Circuits-Cell-CellComm.pdf

2139. S. Basu, D. Karig, R. Weiss, “Engineering signal processing in cells: towards molecular concentration band detection,” Eighth International Meeting on DNA Based Computers, 10-13 June 2002, Hokkaido University, Japan; http://www.ee.princeton.edu/~rweiss/bio-programming/basu-dna8.pdf

2140. Y. Yokobayashi, R. Weiss, F.H. Arnold, “Directed evolution of a genetic circuit,” Proc. Natl. Acad. Sci. (USA) 99(24 December 2002):16587-16591; http://www.pnas.org/cgi/content/abstract/99/26/16587

2141. R. Weiss et al, “Genetic circuit building blocks for cellular computation, communications, and signal processing,” Natural Computing (2003), in press; http://www.ee.princeton.edu/~rweiss/bio-programming/weiss-natural-computing-2003.pdf

2142. Steven Schultz, “Making bacteria behave: Electrical engineer programs cells to do his bidding,” Princeton Weekly Bulletin 92(7 October 2002); http://www.princeton.edu/pr/pwb/02/1007/6a.shtml

2143. Ron Weiss homepage; http://www.ee.princeton.edu/~rweiss/ and http://www.swiss.ai.mit.edu/~rweiss/

2144. Drew Endy, Tom Knight, Randy Rettberg, Gerald J. Sussman, “MIT 2003 IAP. Synthetic Biology Lab: Engineered Genetic Blinkers,” http://syntheticbiology.org/iap/

2145. MIT Registry of Standard Biological Parts (formerly BioBricks Alpha Data Book); http://parts.mit.edu/ or http://parts.syntheticbiology.org/

2146. Pak Chung Wong, Kwong-kwok Wong, Harlan Foote, “Organic data memory using the DNA approach,” Commun. ACM 46(January 2003):95-98; http://portal.acm.org/citation.cfm?doid=602421.602426#abstract (abstract). See also: Natasha McDowell, “Data stored in multiplying bacteria,” NewScientist.com, 8 January 2003; http://www.newscientist.com/news/news.jsp?id=ns99993243

2147. Kimberly Hamad-Schifferli, John J. Schwartz, Aaron T. Santos, Shuguang Zhang, Joseph M. Jacobson, “Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna,” Nature 415(10 January 2002):152-156; http://www.media.mit.edu/molecular/HamadNature.pdf

2148. Philip Ball, “Remote-control for bacteria. Radio waves switch proteins on and off,” Nature ScienceUpdate, 6 December 2002; http://www.nature.com/nsu/021202/021202-12.html

2149. W.M. Pankau, S. Mönninghoff, G. von Kiedrowski, “Thermostable and monoconjugable gold cluster by gripping with a dodekadentate thioether ligand,” submitted, patent pending, 2003. See also: W. Matthias Pankau, Karen Verbist, Günter von Kiedrowski, “Phase-transfer synthesis of novel water-soluble gold clusters with tripodal thioether based ligands,” Chem. Commun. (2001):519-520.

2150. J.-W. Kim, A. Malshe, S. Tung, “Bio-inspired MEMS: A novel microfluidics system actuated by biological cell motors,” 2003 Institute of Biological Engineering (IBE) Annual Meeting, Athens, GA; S. Tung, J.-W. Kim, A. Malshe, C.C. Lee, R. Pooran, “A cellular motor driven microfluidic system,” Tranducers’03 – 12th Intl. Conf. on Solid-State Sensors, Actuators and Microsystems, Boston, MA (acc. for publ.); J.-W. Kim, C.C. Lee, R. Pooran, S. Tung, A. Malshe, “Bio-Micro-Electro-Mechanical System (Bio-MEMS) controlled by microbial cell motors,” 2003 American Society of Agricultural Engineers (ASAE) Annual International Meeting, Las Vegas, NV (acc. for present.); M. Al-Fandi, A. Malshe, J.-W. Kim, S. Tung, J. Jenkins, S. Sundaram, “Design and analysis of viscous micropump actuated using biological cell motors,” ASME Intl. Mechanical Eng. Congress and R&D Expo (IMECE), Washington, D.C., 2003 (abst. subm.).

2151. “Mutant Bacteria Become Microscopic Motors,” University of Arkansas, Fayetteville, 4 February 2003; http://www.sciencedaily.com/releases/2003/02/030204080010.htm

2152. Steve Tung, personal communication to Robert A. Freitas Jr., 28 September 2003.

2153. Steven S. Smith, personal communication to Robert A. Freitas Jr., 1 October 2003.

2154. Helen Pearson, “Construction bugs find tiny work,” Nature ScienceUpdate, 11 July 2003; http://www.nature.com/nsu/030707/030707-9.html

2155. Carlo D. Montemagno, Feynman Prize award lecture, 11th Foresight Conference on Molecular Nanotechnology, Palo Alto, CA, 9-12 October 2003.

2156. Eldrid Sequeira, Alicja J. Copik, “Design and Development of A Nanoscale Microorganism Based Power Unit,” paper presented at 8th Foresight Conf. on Molecular Nanotechnology, 3-5 November 2000; http://www.foresight.org/Conferences/MNT8/Abstracts/Sequeira/

2157. “Bug-driven robots to administer drugs,” BBC News, 22 November 2000; http://news.bbc.co.uk/1/hi/health/1035344.stm

2158. Angela M. Belcher homepage, http://www.cm.utexas.edu/faculty/Belcher.html; Belcher research group website: http://www.cm.utexas.edu/belcher/

2159. “It all falls into place...” Nature 413(2001):668.

2160. Seung-Wuk Lee, Chuanbin Mao, Christien E. Flynn, Angela M. Belcher, “Ordering of quantum dots using genetically engineered viruses,” Science 296(3 May 2002):892-895; http://www.sciencemag.org/cgi/content/full/296/5569/892?ijkey=187CbPcuOaF9Q&. Comment at: C.K. Ober, “Self-assembly. Persistence pays off,” Science 296(3 May 2002):859-861.

2161. Chuanbin Mao, Daniel J. Solis, Brian D. Reiss, Stephen T. Kottmann, Rozamond Y. Sweeney, Andrew Hayhurst, George Georgiou, Brent Iverson, Angela M. Belcher, “Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires,” Science 303(9 January 2004):213-217; http://www.sciencemag.org/cgi/content/full/303/5655/213

2162. Anne Eisenberg, “Benign Viruses Shine on the Silicon Assembly Line,” The New York Times, 12 February 2004; http://www.nytimes.com/2004/02/12/technology/circuits/12next.html

2163. Sandra R. Whaley, Doug S. English, Evelyn L. Hu, Paul F. Barbara, Angela M. Belcher, “Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly,” Nature 405(8 June 2000):665-668. Comment at: C.A. Mirkin, T.A. Taton, “Semiconductors meet biology,” Nature 405(8 June 2000):626-627; http://www.cm.utexas.edu/belcher/sandra.pdf; Angela M. Belcher homepage, http://www.cm.utexas.edu/faculty/Belcher.html; Belcher research group website: http://www.cm.utexas.edu/belcher/

2164. S.J. Park, A.A. Lazarides, C.A. Mirkin, R.L. Letsinger, “Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks,” Angew. Chem. Int. Ed. Engl. 40(3 August 2001):2909-2912.

2165. T.D. Clark, J. Tien, D.C. Duffy, K.E. Paul, G.M. Whitesides, “Self-assembly of 10-microm-sized objects into ordered three-dimensional arrays,” J. Am. Chem. Soc. 123(8 August 2001):7677-7682.

2166. Y. Yin, Y. Lu, B. Gates, Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(12 September 2001):8718-8729.

2167. T.D. Clark, R. Ferrigno, J. Tien, K.E. Paul, G.M. Whitesides, “Template-directed self-assembly of 10-microm-sized hexagonal plates,” J. Am. Chem. Soc. 124(15 May 2002):5419-5426.

2168. Chuanbin Mao, Christine E. Flynn, Andrew Hayhurst, Rozamond Sweeney, Jifa Qi, George Georgiou, Brent Iverson, Angela M. Belcher, “Viral assembly of oriented quantum dot nanowires,” Proc. Natl. Acad. Sci. (USA) 100(10 June 2003):6946-6951.

2169. G.A. Weiss, S.S. Sidhu, “Design and evolution of artificial M13 coat proteins,” J. Mol. Biol. 300(30 June 2000):213-219; S.S. Sidhu, “Engineering M13 for phage display,” Biomol. Eng. 18(September 2001):57-63.

2170. T. Douglas, M. Young, “Virus particles as templates for materials synthesis,” Advanced Materials 11(1999):679-687; E. Gillitzer, D. Willits, M. Young, T. Douglas, “Chemical modification of a viral cage for multivalent presentation,” Chem. Commun. (Camb.) 20(21 October 2002):2390-2391; T. Douglas, E. Strable, D. Willits, A. Aitouchen, M. Libera, M. Young, “Protein engineering of a viral cage for constrained nanomaterials synthesis,” Advanced Materials 14(2002):415-422. See also: Anne M. Rosenthal, “Viral nanoassemblers for electronics,” Scientific American online, 2 September 2002; http://www.sciam.com/article.cfm?articleID=000BEC4E-39F3-1D6E-90FB809EC5880000

2171. E. Dujardin, C. Peet, G. Stubbs, J.N. Culver, S.E. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(2003):413-417.

2172. Qian Wang, Tianwei Lin, Liang Tang, John E. Johnson, M.G. Finn, “Icosahedral virus particles as addressable nanoscale building blocks,” Angew. Chem. Int. Ed. 41(1 February 2002):459-462. See also: “Researchers at TSRI turn viruses into enhanced nanochemical building blocks,” EurekAlert, 28 January 2002; http://www.eurekalert.org/pub_releases/2002-01/sri-rat012502.php

2173. M.T. Klem, D. Willits, M. Young, T. Douglas, “2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy,” J. Am. Chem. Soc. 125(10 September 2003):10806-10807.

2174. T. Douglas, M. Young, “Host-guest encapsulation of materials by assembled virus protein cages,” Nature 393(14 May 1998):152-155; G. Basu, M. Allen, D. Willits, M. Young, T. Douglas, “Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence,” J. Biol. Inorg. Chem. 8(September 2003):721-725; M. Allen, D. Willits, M. Young, T. Douglas, “Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua,” Inorg. Chem. 42(6 October 2003):6300-6305.

2175. Ryan W. Drum, Richard Gordon, “Star Trek replicators and diatom nanotechnology,” Trends in Biotechnol. 21(August 2003):325-328; http://tibtec.trends.com/

2176. R. Gordon, B.D. Aguda, “Diatom morphogenesis: natural fractal fabrication of a complex microstructure,” in G. Harris, C. Walker, eds., Proc. Annual Intl. Conf. IEEE Engineering in Medicine and Biology, Part 1/4: Cardiology and Imaging, 4-7 November 1988, New Orleans, LA, IEEE, New York, pp. 273-274.

2177. R. Gordon, R.W. Drum, “The chemical basis for diatom morphogenesis,” Int. Rev. Cytol. 150(1994):243-372, 421-422 (addendum).

2178. L.A. Sowards et al., “Ordered silica nanostructure created by reaction of tetrahydroxysilane solution with peptide isolated from the diatom C. fusiformis,” Abstr. Am. Chem. Soc. 221(2001):232-BIOT.

2179. K.H. Sandhage et al, “Novel, bioclastic route to self-assembled, 3-D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells,” Adv. Mat. 14(2002):429-433.

2180. Liz Kalaugher, “Diatomists shell out on nanotechnology,” Nanotechweb.org, 2003; http://nanotechweb.org/articles/feature/2/2/2/1. See also New Scientist 181(17 January 2004):26.

2181. J.N. Cha, G.D. Stucky, D.E. Morse, T.J. Deming, “Biomimetic synthesis of ordered silica structures mediated by block copolypeptides,” Nature 403(20 January 2000):289-292.

2182. R.P. Feynman, “There’s Plenty of Room at the Bottom,” Eng. and Sci. (CalTech) 23(February 1960):22-36. Reprinted in B.C. Crandall, James Lewis, eds., Nanotechnology: Research and Perspectives, MIT Press, Cambridge, MA, 1992, pp. 347-363, and in D.H. Gilbert, ed., Miniaturization, Reinhold, New York, 1961, pp. 282-296. See also: http://www.zyvex.com/nanotech/feynman.html

2183. Richard P. Feynman, “The wonders that await a micro-microscope,” Saturday Review 43(1960):45-47.

2184. Theodor Seuss Geisel (Dr. Seuss), The Cat in the Hat Comes Back, Beginner Books, Inc., New York, 1958.

2185. Ed Regis, Nano: The Emerging Science of Nanotechnology, Little, Brown & Company, New York, 1995.

2186. Mehran Mehregany, Yu-Chong Tai, “Surface micromachined mechanisms and micromotors,” J. Micromech. Microeng. 1(1991):73-85.

2187. V.R. Dhuler, M. Mehregany, S.M. Philips, J.H. Lang, “A comparative study of bearing design and operational environments for harmonic side-drive micromotors,” Proc. IEEE Micro Electro Mechanical Systems, Travemunde, Germany, 1992, pp. 171-176.

2188. Doug Stewart, “New Machines are Smaller than a Hair, and Do Real Work,” Smithsonian 21(November 1990):85-96.

2189. Christian Burrer, Jaume Esteve, Emilio Lora-Tamayo, “Resonant silicon accelerometers in bulk micromachining technology – an approach,” J. Microelectromech. Syst. 5(June 1996):122-129.

2190. Ezekiel J.J. Kruglick, Brett A. Warneke, Kristofer S.J. Pister, “CMOS 3-axis accelerometers with integrated amplifier,” Proc. IEEE Micro Electro Mechanical Systems Workshop 1998 (MEMS ‘98).

2191. M. Kraft, C.P. Lewis, T.G. Hesketh, “Closed loop silicon accelerometers,” IEE Proc. Circuits Devices Syst. 145(1998):325-331.

2192. L.S. Fan, Y.C. Tai, R.S. Miller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Trans. Electron. Devices ED-35(1988):724-730.

2193. Roberto Dizon, Hongtao Han, Armistead G. Russell, Michael L. Reed, “An ion milling pattern transfer technique for fabrication of three-dimensional micromechanical structures,” J. Microelectromech. Syst. 2(December 1993):151-159.

2194. K.F. Hale, C. Clarke, R.F. Duggan, B.E. Jones, “Incremental control of a valve actuator employing optopneumatic conversion,” Sensors and Actuators A21-A23(1990):207-210.

2195. Shuichi Shoji, Masayoshi Esashi, “Microfabrication and Microsensors,” Appl. Biochem. Biotech. 41(1993):21-34.

2196. M. Mehregany, K.J. Gabriel, W.S. Trimmer, “Integrated fabrication of polysilicon mechanisms,” IEEE Trans. Electron. Devices ED-35(1988):719-723.

2197. Paul L. Bergstrom, Jin Ji, Yu-Ning Liu, Massoud Kaviany, Kensall D. Wise, “Thermally driven phase-change microactuation,” J. Microelectromechanical Systems 4(January-March 1995):10-17.

2198. M. Fleischer, H. Meixner, “Ultrasonic motors,” Mechatronics 1(1991):403-415.

2199. V.P. Jaecklin, C. Linder, N.F. de Rooij, J.-M. Moret, R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” Proceedings 6th IEEE Micro Electro Mechanical Systems, IEEE Robotics and Automation Society, 1993, pp. 124-127.

 


Last updated on 1 August 2005