Kinematic Self-Replicating Machines

© 2004 Robert A. Freitas Jr. and Ralph C. Merkle. All Rights Reserved.

Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004.


 

References 2300-2399

2300. D.Z. Albert, “On quantum-mechanical automata,” Phys. Lett. 98A(1983):249-252.

2301. Seth Lloyd, “A potentially realizable quantum computer,” Science 261(17 September 1993):1569-1571.

2302. Vladimir Kvasnicka, Jiri Pospichal, T. Kalab, “A study of autoreplicators and hypercycles by typogenetics,” in J. Kelemen, P. Sosik, eds., Advances in Artificial Life (ECAL 2001), LNAI 2159, Springer-Verlag, New York, 2001, pp. 37-54; http://link.springer.de/link/service/series/0558/bibs/2159/21590037.htm (abstract)

2303. Vladimir Kvasnicka, Jiri Pospichal, “Autoreplicators and hypercycles in typogenetics,” J. Chem. Structure (Theochem) 547(2001):119-138.

2304. Ken C. Lynch, “Self-Reference in Programming and Genetics,” http://www.cs.rit.edu/~kcl8605/self-ref.html

2305. Harold C. Morris, “Typogenetics: A logic for artificial life,” in Christopher G. Langton, ed., Volume VI of Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley, New York, 1989, pp. 369-395.

2306. Andrew J. Snare, “Typogenetics,” undergraduate research project, School of Computer Science and Software Engineering (CSSE), Monash University, November 1999; http://www.csse.monash.edu.au/hons/projects/1999/Andrew.Snare/ (website) and http://www.csse.monash.edu.au/hons/projects/ 1999/Andrew.Snare/thesis.pdf (paper)

2307. Louis Varetto, “Typogenetics: An artificial genetic system,” J. Theor. Biol. 160(1993):185-205.

2308. Tim J. Hutton, “Evolvable self-replicating molecules in an artificial chemistry,” Artificial Life 8(Fall 2002):341-356; http://mitpress.mit.edu/catalog/item/default.asp?sid=2AC0A07D-41B4-44CE-AB40-CAA5E0D78F32&ttype=6&tid=10036 (abstract). See also “Squirm3” website: http://www.eastman.ucl.ac.uk/~thutton/Evolution/Squirm3/variant5/ (includes online simulation)

2309. Toyomasa Hatakeyama, Tsuyoshi Nomoto, “Movable finite automaton models for DNA transcription,” (Institute of Electronics, Information and Communication Engineers, Japan) IEICE Trans. Inf. & Syst. J80-D-II(November 1997):3069-3076; http://www.ieice.org/iss/Abstracts/data/97/11/html/97_11_D-II_PAPERS_20.html

2310. William Illsey Atkinson, Nanocosm: Nanotechnology and the Big Changes Coming from the Inconceivably Small, AMACOM, New York, 2003.

2311. Eric Drexler, “Molecular Technology and Cell Repair Machines,” lecture presented at the 1985 Lake Tahoe Life Extension Festival, 25 May 1985; reprinted and published in Claustrophobia Magazine (August-October 1985) and Cryonics (Dec 1985 - January 1986).

2312. Mark Avrum Gubrud, “Back to basics of assembler theory,” online posting at nanotalk@listserv.sc.edu, 26 June 2003.

2313. K. Eric Drexler, “Introduction to Nanotechnology,” in Markus Krummenacker, James Lewis, eds., Prospects in Nanotechnology: Toward Molecular Manufacturing, John Wiley & Sons, New York, 1995, pp. 1-22.

2314. Foresight Institute, “Feynman Grand Prize,” http://www.foresight.org/GrandPrize.0.html

2315. R.C. Merkle, “Molecular Manufacturing: Adding Positional Control to Chemical Synthesis,” Chemical Design Automation News 8(September/October 1993):1 et seq; http://nano.xerox.com/nanotech/CDAarticle.html

2316. Geoff I. Leach, Ralph C. Merkle, “Crystal Clear: A Molecular CAD Tool,” Nanotechnology 5(1994):168-171; http://www.cs.rmit.edu.au/~gl/research/nano/crystal.html

2317. K. Eric Drexler, Ralph C. Merkle, “Simple Pump Selective for Neon,” http://www.imm.org/Parts/Parts1.html; see also at: http://science.nas.nasa.gov/Groups/Nanotechnology/gallery/pump/pumpWhite.jpg

2318. K. Eric Drexler, Ralph C. Merkle, “A Fine-Motion Controller for Molecular Assembly,” http://www.imm.org/Parts/Parts2.html; see also at: http://science.nas.nasa.gov/Groups/Nanotechnology/archive/Drexler/fineMotionController/whiteBackground.jpg

2319. N.G. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, “Fully collapsed carbon nanotubes,” Nature 377(1995):135-138.

2320. Sergey Mishaylovich Krylov, “Prospects of formal technology and nano-technology,” 2000; http://www.cyber.org.ru/ft/prosfte.htm or http://sstu.samara.ru/~vt/prosfte.htm (English language version), http://sstu.samara.ru/~vt/prospft.htm (Russian language version).

2321. Ilian Bonev, “What is Going on With Parallel Robots,” Robotics Online, accessed September 2003; http://www.roboticsonline.com/public/articles/articlesdetails.cfm?id=798

2322. Ralph C. Merkle, Robert A. Freitas Jr., “Theoretical analysis of a carbon-carbon dimer placement tool for diamond mechanosynthesis,” paper presented at the 10th Foresight Conference on Molecular Nanotechnology, October 2002; http://www.foresight.org/Conferences/MNT10/Abstracts/Merkle/index.html

2323. Ralph C. Merkle, Robert A. Freitas Jr., “Theoretical analysis of a carbon-carbon dimer placement tool for diamond mechanosynthesis,” J. Nanosci. Nanotechnol. 3(August 2003):319-324; http://www.rfreitas.com/Nano/DimerTool.htm and http://www.rfreitas.com/Nano/JNNDimerTool.pdf

2324. Jingping Peng, Robert A. Freitas Jr., Ralph C. Merkle, “Theoretical Analysis of Diamond Mechanosynthesis. Part I. Stability of C2 Mediated Growth of Nanocrystalline Diamond C(110) Surface,” J. Comp. Theor. Nanosci. 1(March 2004):62-70; http://www.molecularassembler.com/JCTNPengMar04.pdf

2325. David J. Mann, Jingping Peng, Robert A. Freitas Jr., Ralph C. Merkle, “Theoretical Analysis of Diamond Mechanosynthesis. Part II. C2 Mediated Growth of Diamond C(110) Surface via Si/Ge-Triadamantane Dimer Placement Tools,” J. Comp. Theor. Nanosci. 1(March 2004):71-80; http://www.molecularassembler.com/JCTNMannMar04.pdf

2326. Danny Hillis, The Connection Machine, MIT Press, Cambridge, MA, 1986.

2327. William A. Goddard III, Tahir Cagin, Stephen P. Walch, “Atomistic design and simulations of nanoscale machines and assembly,” Computational Nanotechnology Project, Materials Simulation Center, California Institute of Technology, 1996; http://www.wag.caltech.edu/gallery/nano_comp.html

2328. Zyvex Corp., “Assembler system design,” 21 August 1999; http://www.zyvex.com/Research/SystemDesign.html

2329. Zyvex Corp., “Molecular Nanotechnology,” 7 August 2000; http://www.zyvex.com/Publications/articles/MolecularTech.html

2330. “3-D Animations for ‘Machines Alive’: Rotary Assembler,” E-SPACES, 1998; http://www.e-spaces.com/broadcast/assembler/index.html; “Rotary Assembler: Movies,” http://www.e-spaces.com/broadcast/assembler/asm.mpg

2331. Forrest Bishop, personal communication to Robert A. Freitas Jr., 1 November 2003.

2332. Animations of MEMS assembly conceptualization; ; http://www.zyvex.com/research/exponential.html. MEMbler TM, see http://www1.zyvex.com:8080/ramgen/videos/mems_adaptive.rm and the RealVideoTM at http://www1.zyvex.com/videos/mems_adaptive.rm

2333. Animations of exponential assembly; http://www.zyvex.com/research/exponential.html. Rotapod TM exponential assembly apparatus, see http://www1.zyvex.com:8080/ramgen/videos/roto_adaptive.rm and the RealVideoTM at http://www1.zyvex.com/videos/roto_adaptive.rm

2334. Chris Phoenix, “Design of a Primitive Nanofactory,” J. Evol. and Technol. 13(October 2003); http://www.jetpress.org/volume13/Nanofactory.htm . See also: “CRN Research: Current Results – Bootstrapping a Nanofactory,” 2003; http://CRNano.org/bootstrap.htm

2335. Max Glaskin, “Robot builder could ‘print’ houses,” NewScientist.com, 10 March 2004; http://www.newscientist.com/news/news.jsp?id=ns99994764

2336. Bartosz A. Grzybowski, Michal Radkowski, Christopher J. Campbell, Jessamine Ng Lee, George M. Whitesides, “Self-assembling fluidic machines,” Appl. Phys. Lett. 84(8 March 2004):1798-1800; http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000084000010001798000001. See also “Self-Assembled Fluidic Machines,” Physics News Graphics, 2004; http://www.aip.org/mgr/png/2004/212.htm

2337. Mike Treder, “Talking the Talk,” Center for Responsible Nanotechnology, 10 March 2004; http://crnano.typepad.com/crnblog/2004/03/usc_conference_.html

2338. Robert A. Freitas Jr., “A simple tool for positional diamond mechanosynthesis, and its method of manufacture,” United States Provisional Patent No. 60/543,802, filed 11 February 2004; http://www.MolecularAssembler.com/Papers/DMSToolbuildProvPat.htm. See also: Robert A. Freitas Jr., “Pathway to Diamond-Based Molecular Manufacturing,” Invited Lecture delivered at the First Symposium on Molecular Machine Systems at the First Foresight Conference on Advanced Nanotechnology, 22 October 2004, Washington, DC; http://www.MolecularAssembler.com/Papers/PathDiamMolMfg.htm

2339. Whitney A. Hastings, Mike Labarre, Anand Viswanathan, Stephen Lee, David Sparks, Tony Tran, Jason Nolin, Rob Curry, Michael David, Stanley Huang, Jackrit Suthakorn, Yu Zhou, Gregory S. Chirikjian, “A minimalist parts manipulation system for a self-replicating electromechanical circuit,” Department of Mechanical Engineering, Johns Hopkins University, April 2004; http://www.niac.usra.edu/files/studies/final_report/pdf/880Chirikjian.pdf

2340. Jin Seob Kim, Art Rivera, Danielle Soya, Danny Dokko, Landon Unninayar, Mohammed Ramadon, Robynn Denzene, Zain Syed, Yu Zhou, Jackrit Suthakorn, Gregory S. Chirikjian, “Construction of a prototype of self-replicating electromechanical intelligence,” Department of Mechanical Engineering, Johns Hopkins University, April 2004; http://www.niac.usra.edu/files/studies/final_report/pdf/880Chirikjian.pdf

2341. Jackrit Suthakorn, Gregory S. Chirikjian, “Toward self-replication of robot control circuitry by self-inspection,” Department of Mechanical Engineering, Johns Hopkins University, April 2004; http://www.niac.usra.edu/files/studies/final_report/pdf/880Chirikjian.pdf

2342. William B. Sherman, Nadrian C. Seeman, “A Precisely Controlled DNA Biped Walking Device,” Nano Lett. 4(July 2004):1203-1207. See also: Karen Lurie, “Smallest Robot,” ScienCentral News, 15 July 2004; http://www.sciencentral.com/articles/view.php3?type=article&article_id=218392303; “A Precisely Controlled DNA Biped,” 17 July 2004; http://homepages.nyu.edu/~ws33/

2350. John Mingers, Self-Producing Systems : Implications and Applications of Autopoiesis, Plenum Publishing, New York, 1995; J. Mingers, “An introduction to autopoiesis – implications and applications,” Systems Practice 2(1989):159-180.

2351. Randall Whitaker, “Autopoiesis Checklist,” 2001; http://www.enolagaia.com/Checklist.html

2352. Humberto R. Maturana, “The organization of the living: A theory of the living organization,” Intl. J. Man-Machine Studies, 7(1975):313-332.

2353. Francisco J. Varela, “A calculus for self-reference,” Intl. J. General Systems 2(1975):5-24.

2354. Humberto R. Maturana, Francisco J. Varela, Autopoietic Systems, Univ. of Illinois Biological Computer Lab Report 9.4, Urbana, IL, 1975.

2355. Milan Zeleny, Norbert A. Pierre, “Simulation of self-renewing systems,” in Eric Jantsch, Conrad H. Waddington, eds., Evolution and Consciousness: Human Systems in Transition, Addison-Wesley, Reading, MA, 1976.

2356. Humberto R. Maturana, Francisco J. Varela, “Autopoiesis: The Organization of the Living,” in Humberto R. Maturana, Francisco J. Varela, Autopoiesis and Cognition: The Realization of the Living, Vol. 42, Boston Studies in the Philosophy of Sciences, D. Riedel Publishing Co., Boston, MA, 1980, pp. 59-138.

2357. Milan Zeleny, ed., Autopoiesis: A Theory of Living Organizations, Vol. 3, North Holland Series in General Systems Research, North-Holland, New York, 1981.

2358. Francisco J. Varela, “Autonomy and autopoiesis,” in G. Roth, H. Schwegler, eds., Self- Organizing Systems, Campus Verlag, Frankfurt, 1981, pp. 14-23.

2359. T. Winograd, F. Flores, Understanding Computers and Cognition, Addison-Wesley, Reading, MA, 1986.

2360. Humberto R. Maturana, Francisco J. Varela, The Tree of Knowledge, Shambhala Publications, Boston, MA, 1987.

2361. S. Vogel, Life’s Devices: The Physical World of Animals and Plants, Princeton University Press, Princeton, NJ, 1988.

2362. Francisco J. Varela, Paul Bourgine, eds., Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, MIT Press, Cambridge, MA, 1992.

2363. G. Kampis, “Life-like computing beyond the machine metaphor,” in R. Paton, ed., Computing with Biological Metaphors, Chapman and Hall, London, 1994.

2364. Barry McMullin, “Computational autopoiesis: the original algorithm,” Working Paper 97-01-001, Santa Fe Institute, Santa Fe, NM, January 1997; http://www.santafe.edu/sfi/publications/Working-P< 97-01-001>

2365. Barry McMullin, “SCL: An artificial chemistry in Swarm,” Working Paper 97-01-002, Santa Fe Institute, Santa Fe, NM, 1997; http://www.santafe.edu/sfi/publications/Working-P< 97-01-002>

2366. Randall Whitaker, Encyclopaedia Autopoietica: An Annotated Lexical Compendium on Autopoiesis and Enaction, 2001; http://www.informatik.umu.se/~rwhit/EAIntro.html or http://www.informatik.umu.se/%7Erwhit/EA.html

2367. Barry McMullin, “Some remarks on autocatalysis and autopoiesis,” Technical Report No. bmcm-9901, presented at workshop, Closure: Emergent Organizations and their Dynamics, 3-5 May 1999, University of Ghent, Belgium; http://www.eeng.dcu.ie/~alife/bmcm9901/

2368. Barry McMullin, Dominique Gross, “Towards the implementation of evolving autopoietic artificial agents,” in J. Kelemen, P. Sosik, eds., Advances in Artificial Life, Proceedings of the 6th European Conference, Springer; Technical Report No. bmcm-ecal-2001, presented at ECAL, Prague, Czech Republic, September 2001; http://www.eeng.dcu.ie/~alife/bmcm-ecal-2001/. See also Barry McMullin’s artificial life work “DCU ALife Lab” describing basic autopoietic agents in Virtual Chemistries; http://www.eeng.dcu.ie/~alife/Research.html

2369. F.J. Varela, J. Goguen, “The arithmetic of closure,” J. Cybernetics 8(1978):291-324.

2370. Francisco J. Varela, Principles of Biological Autonomy, Elsevier North-Holland, New York, 1979.

2371. Jerry L.R. Chandler, Gertrudis van de Vijver, eds., Closure: Emergent Organizations and their Dynamics, Annals N.Y. Acad. Sci. 901(2000).

2372. A.A. Bogdanov, Tektologia: Vseobschaya Organizatsionnaya Nauka, Z.I. Grschebin Verlag, Berlin, 1922; reprinted as: A.A. Bogdanov, Essays in the Universal Organizational Science, InterSystems Publishers, 1980. (Translated into English by G. Gorelik)

2373. Walter Fontana, “The barrier of objects: From dynamical systems to bounded organizations,” Santa Fe Institute Working Paper 96-05-035; http://www.santafe.edu/sfi/publications/Working-Papers/96-05-035.ps

2374. P.O. Luksha, “The firm as a self-reproducing system,” ISSS’03 Conference Proceedings, Crete, Greece, 2003; http://www.systemicbusiness.org/digests/sabi2003/2003_ISSS_47th_069_Luksha.pdf or http://www.unizar.es/sociocybernetics/congresos/CORFU/papers/luksha.pdf

2375. D. Richardson, “Continuous self-reproduction,” J. Comput. Syst. Sci. 12(1976):6-12.

2376. B. Goodwin, “A relational or field theory of reproduction and its evolutionary implications,” in M.W. Ho, P.T. Saunders, eds., Beyond Neo-Darwinism, Academic Press, London, 1984, pp. 219-241.

2377. G. Kampis, V. Csanyi, “Life, self-reproduction and information: Beyond the machine metaphor,” J. Theor. Biol. 148(1991):17-32.

2378. George Kampis, Self-Modifying Systems in Biology and Cognitive Science, Pergamon Press, Oxford, 1991.

2379. Arantza Etxeberria, “Embodiment of natural and artificial systems,” in G. van de Vijver, S. Salthe, eds., Proc. Intl. Seminar on Evolutionary Systems, Vienna, 1995.

2380. Luis M. Rocha, “Eigenbehavior and symbols,” Systems Research 12(1996):371-384; http://www.c3.lanl.gov/~rocha/sr.html

2381. Luis M. Rocha, “Selected self-organization and the semiotics of evolutionary systems,” in S. Salthe, G. Van de Vijver, M. Delpos, eds., Evolutionary Systems: The Biological and Epistemological Perspectives on Selection and Self-Organization, Kluwer Academic Publishers, 1998, pp. 341-358; http://wwwc3.lanl.gov/~rocha/ises.html or http://wwwc3.lanl.gov/~rocha/ps/ises.pdf

2382. Howard H. Pattee, “Evolving self-reference: matter, symbols, and semantic closure,” Communication and Cognition – Artificial Intelligence 12(1995):9-27 (Special Issue on Self-Reference in Biological and Cognitive Systems).

2383. Howard H. Pattee, “Cell psychology: an evolutionary approach to the symbol-matter problem,” Cognition and Brain Theory 5(1982):325-341.

2384. Luis M. Rocha, “Artificial semantically closed objects,” Communication and Cognition – Artificial Intelligence 12(1995):63-90 (Special Issue on Self-Reference in Biological and Cognitive Systems); http://www.c3.lanl.gov/~rocha/tilsccai.html

2385. Jon Umerez, “Semantic closure: a guiding notion to ground Artificial Life,” in F. Moran, A. Moreno, J.J. Merelo, P. Chacon, eds., Advances in Artificial Life, Springer-Verlag, New York, 1995, pp. 77-94.

2386. Tatsuya Nomura, “Formal description of autopoiesis for analytic models of life and social systems,” in Russell K. Standish, Hussein A. Abbass, Mark A. Bedau, eds., Artificial Life VIII, 8th Intl. Conf. on the Simulation and Synthesis of Living Systems, University of New South Wales, Australia, 9-13 December 2002, MIT Press, Cambridge, MA, 2000, pp. 15-18; http://parallel.acsu.unsw.edu.au/complex/alife8/proceedings/sub358.pdf

2387. Barry McMullin, “John von Neumann and the evolutionary growth of complexity: looking backwards, looking forwards...” in Artificial Life VII, Proceedings of the Seventh International Conference on Artificial Life, MIT Press, Cambridge, MA, 2000, pp. 467-476; http://www.eeng.dcu.ie/~alife/bmcm-2000-01/; also published in Artificial Life 6(Fall 2000):347-361; http://www.eeng.dcu.ie/~alife/bmcm-alj-2000/

2388. Pavel O. Luksha, “Formal definition of self-reproductive systems,” in Russell K. Standish, Hussein A. Abbass, Mark A. Bedau, eds., Artificial Life VIII, 8th Intl. Conf. on the Simulation and Synthesis of Living Systems, University of New South Wales, Australia, 9-13 December 2002, MIT Press, Cambridge, MA, 2000, pp. 414-417; http://parallel.hpc.unsw.edu.au/complex/alife8/proceedings/sub2783.pdf

2389. Alexei A. Sharov, “Self-reproducing systems: structure, niche relations and evolution,” BioSystems 25(1991):237-249; http://www.gypsymoth.ento.vt.edu/~sharov/biosem/petri/petri.html (summary) or http://www.gypsymoth.ento.vt.edu/~sharov/pdf/selfrep.pdf (paper)

2390. L. Lofgren, “Kinematic and tessellation models of self-repair,” in E.E. Bernard, M.A. Dare, eds., Biological Prototypes and Synthetic Systems, Vol. 1, Plenum Press, New York, 1962, pp. 342-369.

2391. “Chapter IX. On Learning and Self-Reproducing Machines,” in Norbert Wiener, Cybernetics, 2nd Edition, MIT Press, Cambridge, MA, 1965, pp. 169-180.

2392. G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, John Wiley & Sons, New York, 1977.

2393. James Grier Miller, Living Systems, McGraw-Hill Book Company, New York, 1978.

2394. Robert A. Freitas Jr., “A general theory of living systems,” Analog 100(March 1980):61-75.

2395. Stuart A. Kauffman, At Home in the Universe: The Search for the Laws of Self-Organization and Complexity, Oxford University Press, New York, 1995.

2396. Stuart A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, New York, 1993.

2397. Freeman J. Dyson, Origins of Life, Cambridge University Press, New York, 1999.

2398. Daniel Segre, Dafna Ben-Eli, Doron Lancet, “Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies,” Proc. Natl. Acad. Sci. (USA) 97(11 April 2000):4112-4117; http://www.pnas.org/cgi/content/full/97/8/4112. Daniel Segre, “Inheritance without biopolymers in a computer model for primordial evolution,” Krasnow Institute, George Mason University, 1999; http://www.gmu.edu/departments/krasnow/abstracts_frames/abs99/segr9907.htm (Abstract)

2399. Kevin J. Gaston, Robert M. May, “Taxonomy of taxonomists,” Nature 356(26 March 1992):281-282.

 


Last updated on 1 August 2005