Kinematic Self-Replicating Machines

© 2004 Robert A. Freitas Jr. and Ralph C. Merkle. All Rights Reserved.

Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004.


References 1200-1299

1200. A. Bertsch, S. Zissi, J.Y. Jezequel, S. Corbel, J.C. Andre, “Microstereophotolithography using a liquid crystal display as dynamic mask-generator,” Micro. Tech. 3(1997):42-47.

1201. M. Cabrera, A. Bertsch, J. Chassaing, J.Y. Jezequel, J.C. Andre, “Microfabrication of very small objects: pushing the limits of stereophotolithography,” Mol. Cryst. Liq. Cryst. 315(1998):223-234.

1202. C. Ecoffet, A. Espanet, D.J. Lougnot, “Photopolymerization by evanescent waves: a new method to obtain nanoparts,” Adv. Mater. 10(1998):411-414.

1203. K. Ikuta, S. Maruo, S. Kojima, “New micro stereo lithography for freely movable 3-D micro structure – Super IH Process with submicron resolution,” Proc. 11th IEEE Workshop on Micro Electro Mechanical Systems (MEMS’98), 1998, pp. 290-295.

1204. S. Maruo, S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromechanical Syst. 7(1998):411-415.

1205. D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(1998):289-291.

1206. X. Zhang, X.N. Jiang, C. Sun, “Micro-stereolithography for MEMS,” Micro Electro Mechanical Systems (MEMS) ASME 66(1998):3-9.

1207. C.R. Chatwin, M. Farsari, S. Huang, M.I. Heywood, R.C.D. Young, P.M. Birch, F. Clarte-Tournier, J.D. Richardson, “Characterization of epoxy resins for microstereolithographic rapid prototyping,” Int. J. Adv. Manuf. Technol. 15(1999):281-286.

1208. S. Maruo, K. Ikuta, “Movable microstructures made by two-photon three dimensional microfabrication,” Proc. Intl. Symp. on Micromechatronics and Human Science (MHS’99), 1999, pp. 173-178.

1209. J.S. Young, S.R. Fox, K.S. Anseth, “A novel device for producing three-dimensional objects,” J. Manufacturing Sci. and Eng. – Transactions of the ASME 121(1999):474-477.

1210. X. Zhang, X. Jiang, C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sensors and Actuators A 77(1999):149-156.

1211. A. Bertsch, P. Bernhard, C. Vogt, P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping Journal 6(2000):259-266.

1212. M. Farsari, F. Clarte-Tournier, S. Huang, C.R. Chatwin, D. Budgett, P.M. Birch, R.C.D. Young, J.D. Richardson, “A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask,” J. Mater. Process. Technol. 107(2000):167-172.

1213. P. Galajda, O. Pal, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2001):249-251.

1214. S. Monneret, C. Provin, H. Le Gall, “Micro-scale rapid prototyping by stereolithography,” Proc. 8th IEEE Intl. Conf. on Emerging Technologies and Factory Automation (ETFA 2001) 2(2001):299-304.

1215. C. Provin, S. Monneret, “Complex ceramic-polymer composite microparts made by microstereolithography,” Proc. Design, Test, Integration and Packaging of MEMS/MOEMS Conf., SPIE 4408(2001):535-542.

1216. S. Maruo, K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sensors and Actuators A 100(2002):70-76.

1217. C. Sun, X. Zhang, “Experimental and numerical investigations on microstereolithography of ceramics,” J. Appl. Phys. 92(2002):4796-4802.

1218. Dongmin Wu, Nicholas Fang, Cheng Sun, Xiang Zhang, “Adhesion force of polymeric three-dimensional microstructures fabricated by microstereolithography,” Appl. Phys. Lett. 81(2002):3963-3965.

1219. A. Bertsch, S. Jiguet, P. Bernhard, P. Renaud, “Microstereolithography: a review,” Mat. Res. Soc. Symp. Proc. 739(2003):LL1.1.1-LL1.1.11.

1220. S. Maruo, K. Ikuta, H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(2003):133-135.

1221. S. Maruo, K. Ikuta, H. Korogi, “Optically driven micromanipulation tools fabricated by two-photon microstereolithography,” Mat. Res. Soc. Symp. Proc. 739(2003):H9.4.1-H9.4.6.

1222. A. Bertsch, S. Zissi, M. Calin, S. Ballandras, A. Bourjault, D. Hauden, J.C. Andre, “Conception and realization of miniaturized actuators fabricated by microstereophotolithography and actuated by shape memory alloys,” Proc. 3rd France-Japan Congress and 1st Europe-Asia Congress on Mechatronics 2(1996):631-634.

1223. S. Ballandras, M. Calin, S. Zissi, A. Bertsch, J.C. Andre, D. Hauden, “Microstereophotolithography and shape memory alloy for the fabrication of miniaturized actuators,” Sensors and Actuators A 62(1997):741-747.

1224. K. Ikuta, “Biomedical micro device fabricated by micro stereo lithography (IH process) ‘Metabiotic Device’ – a synthetic approach for life science,” Proc. 6th Intl. Symp. on Micro Machine and Human Science (MHS’95), 1995, pp. 71-76.

1225. K. Ikuta, Y. Sasaki, H. Maegawa, S. Maruo, T. Hasegawa, “Micro ultrasonic homogenizer chip made by hybrid microstereolithography,” Proc. Micro Total Analysis Systems Conference (MicroTAS’02) 2(2002):745-747.

1226. T.S. Ji, K.J. Vinoy, V.K. Varadan, “Distributed MEMS phase shifters by microstereolithography on silicon substrates for microwave and millimeter wave applications,” Smart Materials and Structures 10(2001):1224-1229.

1227. Y. Mizukami, D. Rajniak, M. Nishimura, “An integrated micro-electrophoretic chip fabricated using a new stereolithographic process,” Proc. 13th IEEE Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2000), 2000, pp. 751-756.

1228. J. Cooper McDonald, M.L. Chabinyc, S.J. Metallo, J.R. Anderson, G.M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem. 74(2002):1537-1545.

1229. Daniel Therriault, Scott R. White, Jennifer A. Lewis, “Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,” Nat. Mater. 2(April 2003):265-271 (doi:10.1038/nmat863), Nat. Mater. 2(May 2003):347 (erratum); (abstract). See also: James E. Kloeppel, “Fabricated microvascular networks could create compact fluidic factories,” News Bureau, University of Illinois at Urbana-Champaign, 24 March 2003;

1230. S. Maruo, K. Ikuta, T. Ninagawa, “Multi-polymer microstereolithography for hybrid opto-MEMS,” Proc. 14th IEEE Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2001), 2001, pp. 151-154.

1231. M.C. Carrozza, N. Croce, B. Magnani, P. Dario, “A piezoelectric-driven stereolithography-fabricated micropump,” J. Micromech. Microeng. 5(1995):177-179.

1232. D. Accoto, M.C. Carrozza, P. Dario, “Modelling of micropumps using unimorph piezoelectric actuators and ball valves,” J. Micromech. Microeng. 10(2000):277-281.

1233. V.K. Varadan, V.V. Varadan, “Micro pump and venous valve by micro stereo lithography,” Proc. SPIE Smart Structures and Materials 2000: Smart Electronics and MEMS 3990(2000):246-254.

1234. M. Calin, A. Bertsch, N. Chaillet, S. Zissi, S. Ballandras, J. C. Andre, A. Bourjault, D. Hauden, “Microrobots realized by microstereophotolithography and actuated by shape memory alloys,” Proc. 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems 3(1997):V33-V34.

1235. L. Nelson, N. Richardson, “Formation of thin rods of pyrolytic carbon by heating with a focused carbon dioxide laser,” Materials Res. Bull. 7(1972):971-976.

1236. H. Westberg, M. Boman, S. Johansson, J. Schweitz, “Truly three dimensional structures microfabricated by laser chemical processing,” IEEE, May 1991, pp. 516-519; S. Johansson, J. Schweitz, H. Westberg, M. Boman, “Microfabrication of three-dimensional boron structures by laser chemical processing,” J. Appl. Phys. 72(15 December 1992):5956-5963.

1237. J. Maxwell, K. Larsson, M. Boman, P. Hooge, K. Williams, P. Coane, “Rapid prototyping of functional three-dimensional microsolenoids and electromagnets by high-pressure laser chemical vapor deposition,” Solid Freeform Fabrication, August 1998, pp. 529-536; J. Maxwell, M. Boman, K. Williams, K. Larsson, N. Jaikumar, G. Saiprasanna, “High-speed laser chemical vapor deposition of amorphous carbon fibers, stacked conductive coils, and folded helical springs,” SPIE Conf. on Micromachining and Microfabrication Process Technology V, Santa Clara, CA, September 1999, SPIE, Vol. 3874, pp. 227-235; K. Williams, J. Maxwell, K. Larsson, M. Boman, “Freeform fabrication of functional microsolenoids, electromagnets and helical springs using high-pressure laser chemical vapor deposition,” IEEE, 1999, pp. 232-237.

1238. D. Messia, J. Pegna, W.H. Lee, “Layered micro-wall structures from gas phase,” Proc. Solid Freeform Fabrication Symposium, August 1997, pp. 231-240.

1239. Chad E. Duty, Daniel L. Jean, W. Jack Lackey, “Laser CVD rapid prototyping,” Proc. Amer. Ceramic Soc. Meeting, Cocoa Beach, FL, January 1999, pp. 347-354; Daniel L. Jean, Chad E. Duty, Brian T. Fuhrman, W. Jack Lackey, “Precision LCVD system design with real time process control,” Proc. Solid Freeform Fabrication Symposium, Austin, TX, August 1999, pp. 59-65; Daniel L. Jean, Chad E. Duty, Brian T. Fuhrman, W. Jack Lackey, “Precision carbon deposition using pyrolytic laser chemical vapor deposition (LCVD),”

1240. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices,” Nature 412(2001):697-698.

1241. W.C. Wilson Jr., T. Boland, “Cell and organ printing 1: Protein and cell printers,” Anat. Rec. 272A(June 2003):491-496.

1242. T. Boland, V. Mironov, A. Gutowska, E.A. Roth, R.R. Markwald, “Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels,” Anat. Rec. 272A(June 2003):497-502.

1243. Vladimir Mironov, Thomas Boland, T. Trusk, G. Forgacs, R.R. Markwald, “Organ printing: computer-aided jet-based 3-D tissue engineering,” Trends Biotechnol. 21(April 2003):157-161.

1244. Charles Choi, “Ink-jet printing creates tubes of living tissue,” New Scientist, 22 January 2003;

1245. L.R. Bao, X. Cheng, X.D. Huang, L.J. Guo, S.W. Pang, A.F. Yee, “Nanoimprinting over topography and multilayer three-dimensional printing,” J. Vac. Sci. Technol. B 20(2003):2881.

1246. John Whitfield, “Bull wins size prize,” Nature Science Update, 16 August 2001;

1247. Seth R. Marder, Joseph W. Perry, “Two-photon materials chemistry,” 11th Foresight Conference on Molecular Nanotechnology, October 2003; See also: Focal Point Microsystems LLC.

1248. Robert Riehn, Ana Charas, Jorge Morgado, F. Cacialli, “Near-field optical lithography of a conjugated polymer,” Appl. Phys. Lett. 82(27 January 2003):526-528; See also: “Nano rapid prototyping advances,”, 18/25 June 2003;

1249. O. Lehmann, M. Stuke, “Laser-driven movement of three-dimensional microstructures generated by laser rapid prototyping,” Science 270(1995):1644-1646.

1250. T. Gotz, M. Stuke, “Short pulse UV laser ablation of solid and liquid metals,” Appl. Phys. A64(1997):539-543.

1251. M.C. Wanke, O. Lehmann, K. Muller, Q. Wen, M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(1997):1284-1286.

1252. Duncan Graham-Rowe, “Bad breaks fixed fast by bone ‘printer’,”, 20 June 2003,; “The Plasti-Bone: A Ceramic Polymer Innovation In Medicine,” Office of Naval Research (ONR) Media, 13 June 2003, or

1253. Therics, Inc.;

1254. Sciperio Inc., “Human Architectural Tool (HAT) Capabilities,” 2003;

1255. Hesham Taha, Robert S. Marks, Levi A. Gheber, Ittay Rousso, John Newman, Chaim Sukenik, Aaron Lewis, “Protein printing with an atomic force sensing nanofountainpen,” Appl. Phys. Lett. 83(2003):1041.

1256. Aristides Docoslis, Paschalis Alexandridis, “One-, two-, and three-dimensional organization of colloidal particles using non-uniform AC electric fields” Electrophoresis 23(2002):2174-2183. See also: John Della Contrada, “UB Engineer Develops Novel Method for Assembly of Nanoparticles. Process may lead to manufacture of nanoscale devices,” University at Buffalo, The State University of New York, 21 November 2002;

1257. “Personal Fabrication: A Talk with Neil Gershenfeld,” Edge 123, 24 July 2003; or

1258. “Robot learns to reproduce,” BBC News, 30 August 2000;

1259. Curt Bererton, Ph.D. “Research” page, Dept. of Computer Science, Carnegie Mellon University, 2003;

1260. Curt Bererton, Pradeep Khosla, “Towards A Team of Robots with Repair Capabilities: Docking Systems,” Proc. Intl. Symp. on Experimental Robotics, 2000;

1261. Curt Bererton, Pradeep Khosla, “Towards A Team of Robots with Reconfiguration and Repair Capabilities,” Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA 2001), Vol. 3, 2001, pp. 2923-2928;

1262. Curt Bererton, Pradeep Khosla, “An analysis of cooperative repair capabilities in a team of robots,” Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA 2002), Vol. 1, 2002, pp. 476-482;

1263. Curt Bererton, repair robot videos: “Teleoperation of the repair robot” (18 Meg avi),; “Autonomous docking using vision” (4 Meg avi),; “Autonomous module removal using vision” (18 Meg avi),

1264. A.M. Flynn, R.A. Brooks, W.M. Wells III, D.S. Barrett, “Intelligence for miniature robots,” Intl. J. Sensors Actuators 20(December 1989):187-196.

1265. R.A. Brooks, “Intelligence without representation,” Artificial Intelligence Journal 47(1991):139-159;

1266. R.A. Brooks, “New approaches to robotics,” Science 253(September 1991):1227-1232;

1267. Luc Steels, Rodney A. Brooks, eds., The Artificial Life Route to Artificial Intelligence: Building Embodied Situated Agents, Lawrence Erlbaum Associates, Hillsdale, NJ, 1995.

1268. Cynthia Breazeal, Designing Sociable Robots, Cambridge, MA, 2001; B. Adams, Cynthia Breazeal, Rodney A. Brooks, Brian Scassellati, “Humanoid robots: A new kind of tool,” IEEE Intelligent Systems and Their Applications: Special Issue on Humanoid Robotics 15(July/August 2000):25-31;

1269. Rodney Allen Brooks, Flesh and Machines: How Robots Will Change Us, Pantheon Books, New York, 2002.

1270. “Hannibal and Attila”;

1271. Rodney Brooks, Cambrian Intelligence: The Early History of the New AI, MIT Press, Cambridge, MA, 1999.

1272. “Genghis”;

1273. “Cog”;; Rodney A. Brooks, Cynthia Breazeal, Matthew Marjanovic, Brian Scassellati, Matthew Williamson, “The Cog project: Building a humanoid robot,” in C. Nehaniv, ed., Computation for Metaphors, Analogy, and Agents: Lecture Notes in Artificial Intelligence 1562, Springer, New York, 1999, pp. 52–87;; R.A. Brooks, “The Cog project,” J. Robotics Soc. Japan (Toshihiro Matsui, ed., Special Issue (Mini) on Humanoid) 15(October 1997); see also: “The Humanoid Robotics Group,”

1274. “Kismet”;

1275. Rodney A. Brooks, “Living machines,” MIT AI Lab Research Abstracts, September 2001;

1276. Rodney Brooks, “The relationship between matter and life,” Nature 409(18 January 2001):409-411;

1277. John Brockman, “Beyond computation: A talk with Rodney Brooks,” Edge Foundation, Inc., 5 June 2002;

1278. Jessica Banks, “Progressive robotic self-assembly,” Living Machines Projects, MIT Artificial Intelligence Laboratory, 2002;

1279. Lijin Aryananda, “Multi-cellularity: origin, organization, and reproduction,” Living Machines Projects, MIT Artificial Intelligence Laboratory, 2002;

1280. Martin C. Martin, “Eden,” Living Machines Projects, MIT Artificial Intelligence Laboratory, 2002;; Martin C. Martin, “Complexity from a simple bag of tricks,” MIT AI Lab Research Abstracts, September 2001;

1281. Gregory S. Chirikjian, “Kinematics of a metamorphic robotic system,” Proc. 1994 IEEE Intl. Conf. On Robotics and Automation, San Diego, CA, May 1994, pp. 449-455;

1282. Gregory S. Chirikjian, Amit Pamecha, Imme Ebert-Uphoff, “Evaluating efficiency of self-reconfiguration in a class of modular robots,” J. Robotic Systems 13(1996):317-338; See generally:

1283. A. Pamecha, C. Chiang, D. Stein, G.S. Chirikjian, “Design and implementation of metamorphic robots,” in J. McCarthy, ed., Proc. 1996 ASME Design Engineering Technical Conf. and Computers in Engineering Conf., ASME, 1996.

1284. Gregory S. Chirikjian, Jackrit Suthakorn, J. Zhou, “Self-replicating robot: A project in the mechatronics at Johns Hopkins University,” JHU, Spring 2002;

1285. Gregory S. Chirikjian, Jackrit Suthakorn, “Toward self-replicating robots,” Paper #067, Session 8: Design, 9 July 2002, Proc. 8th Intl. Symp. on Experimental Robotics (ISER ‘02), Italy, 8-11 July 2002; or

1286. Jackrit Suthakorn, “Self-Replicating Robots,”

1287. Jackrit Suthakorn, “Part III: Self-Replicating Robots,” in Paradigms of Service Robotics, Ph.D. Dissertation, Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, February 2003, pp. 167-236;

1288. Jackrit Suthakorn, Y.T. Kwon, G.S. Chirikjian, “A semi-autonomous replicating robotic system,” Proc. 2003 IEEE Intl. Symp. on Computational Intelligence in Robotics and Automation (CIRA), Kobe, Japan, 2003;

1289. Jackrit Suthakorn, Andrew B. Cushing, Gregory S. Chirikjian, “An autonomous self-replicating robotic system,” Proc. 2003 IEEE/ASME Intl. Conf. on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 2003; or; IEEE/ASME Trans. Mechatronics (submitted December 2003).

1290. Jackrit Suthakorn et al, “The intelligence of an autonomous self-replicating robotic system,” submitted for review, 2003.

1291. For example: Barry Brian Werger, “Scalable Behavior-Based Multi-Robot Systems,” Interaction Lab, University of Southern California, 12 February 2001,; Gabe Sibley, “SCOWR (Scalable Coordination of Wireless Robots),” University of Southern California, 24 October 2001,; Jens Wawerla, “Collective Construction with Multiple Robots,” Robotics Research Labs, University of Southern California, 21 February 2002,; Brian P. Gerkey, “Auction-based Multi-Robot Coordination,” University of Southern California, 13 February 2003,

1292. “A Semi Replicating Robotic System (Summer 2002),” ~33 MB AVI video clip of Suthakorn-Chirikjian semi-self-replicating robots;

1293. “An Autonomous Self-Replicating Robotic System (Fall 2002),” ~21 MB AVI video clip of Suthakorn-Chirikjian auto-self-replicating robots;

1294. NASA Institute for Advanced Concepts (NIAC),; Universities Space Research Association (USRA);

1295. Hod Lipson, “Autonomous Self-Extending Machines for Accelerating Space Exploration,” 1 May 2002 to 31 October 2002, NASA Institute for Advanced Concepts (NIAC); Abstract,; Annual Meeting Presentation,

1296. Hod Lipson, Evan Malone, “Autonomous Self-Extending Machines for Accelerating Space Exploration,” NIAC CP 01-02, Advanced Aeronautical/Space Concept Studies Phase I Report, Final Report, 2002;

1297. Gregory Chirikjian, “Architecture for Unmanned Self-Replicating Lunar Factories,” 1 October 2003 to 31 March 2004, NASA Institute for Advanced Concepts (NIAC);; Gregory S. Chirikjian, “An Architecture for Self-Replicating Lunar Factories,” NIAC Phase I Award: 1 October 2003 – 31 March 2004, Final Report, 26 April 2004;

1298. Paul Todd, “Robotic Lunar Ecopoiesis Test Bed,” 1 October 2003 to 31 March 2004, NASA Institute for Advanced Concepts (NIAC);

1299. Tihamer Toth-Fejel, “Modeling Kinematic Cellular Automata: An Approach to Self-Replication,” 1 October 2003 to 31 March 2004, NASA Institute for Advanced Concepts (NIAC);; Tihamer Toth-Fejel, “Modeling Kinematic Cellular Automata: Final Report,” NASA Institute for Advanced Concepts, Phase I: CP-02-02, General Dynamics Advanced Information Systems Contract #P03-0984, 30 April 2004;


Last updated on 1 August 2005